Reference Sheet -- Packet \#7

36 g of salt will dissolve in 100 g water at $25^{\circ} \mathrm{C}$

Reference Sheet -- Packet \#7

unsaturated: a solution which contains less solute than what could be dissolved for a given temperature. Unsaturated solutions still have "room" to hold more solute. They often appear clear. If one more grain of solute is added, it dissolves upon mixing.
saturated: a solution which contains the maximum amount of solute dissolved for a given temperature. Saturated solutions cannot dissolve any extra solute, and often has excess solute sitting undissolved at the bottom.
supersaturated: this type of solution contains more solute than what is supposed to be dissolved for a given temperature. It was "tricked" by adding extra solute, heating it so it all dissolves, then cooling it carefully without re-crystallization. Supersaturated solutions appear unsaturated, but adding one extra crystal of solute will return this solution to being saturated.

- How much KCl can dissolve in 215 g of water @ $80^{\circ} \mathrm{C}$?
- What temp is req'd to dissolve $65 \mathrm{~g} \mathrm{KNO}_{3}$ in 45 g water?

packet \#7 Objectives

- how to use a volumetric flask
- know about hydrogen bonding; identify whether or not a molecule can do hydrogen bonding
- how to read and do calculations from a solubility graph for solids \& gases. Know bottom of WS 7.3
- how to calculate the concentration of a solution in \%, ppm, M
- how to perform calculations relating to solution dilutions
- identify differences between solutions that are unsaturated, saturated, \& supersaturated
- identify substances as being polar or non-polar, including how soap works
- identify a mixture as a solution, colloid, and suspension
- how to calculate molality, and use it for boiling point elevation \& freezing point depression problems

1. A solution is made of 12 g NaCl and $70 . \mathrm{g}$ water. What is the $\% \mathrm{NaCl}$?
2. A 115 g of solution contains 8.50 g of KBr . What is the $\% \mathrm{KBr}$?
3. How much NaOH would there be in 65 g of a $12 \% \mathrm{NaOH}$ solution?
4. Air is 18% oxygen. How much oxygen can be distilled from 87 pounds of air?
5. How much $15.0 \% \mathrm{AgNO}_{3}$ solution can be made from 12.2 g of AgNO_{3} ?

6a. 0.0050 g of Fe^{3+} are dissolved in 750 g of solution. What is the \% concentration of Fe^{3+} ?

6b. Calculate this concentration in ppm.
7. Convert 14% into ppt.
.. In-Class Practice Problems .. Molarity Problems ..

1. What is the molarity of a solution containing 25 g of NaCN dissolved in 950 mL of solution?
2. How many moles of HCl are needed to make 3.0 L of a 1.2 M solution?
3. How many grams of NaOH are needed to make 220 mL of a 3.5 M solution?
4. What volume of $2.70 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution can be made using 5.00 moles of $\mathrm{NH}_{4} \mathrm{Cl}$?
Ans (IRO): 0.000067 0.54 1.85

-. In-Class Practice Problems .. Dilution Problems ..

1. What's the concentration of a mixture of one volume of 4.0 M HCl and one volume of water?
2. 55 L of $2.2 \mathrm{M} \mathrm{NaCl} \& 21 \mathrm{~L}$ of water are mixed. What's the final molarity?
(_____)
3. 18 L of 3.0 M NaCl are diluted to a total volume of 44 L . What's the final molarity?
(_____)
4. To what total volume must 100.0 mL of 2.30 M HCl be diluted to reduce its concentration to 0.500 M ?
\qquad
5. What volume of 2.0 M HCl should be added to 195 mL of water to make the final concentration 0.45 M ?
\qquad
6. What volume of 1.0 M KI should be added to 65 mL of 3.5 M KI to make the total concentration 1.5 M ?
\qquad

Ans: (IRO) $1.2 \begin{array}{lllllllllllll}1.6 & 2 & 57 & 260 & 460 . & \text { Units: } & M & M & M & M & m L & m L & m L\end{array}$

