1. A container of neon gas initially has a volume of 1.15 L , a pressure of 0.950 atm , and a temperature of $30.0^{\circ} \mathrm{C}$. What will be its new pressure if the temperature is lowered to $15.0^{\circ} \mathrm{C}$ and its volume is increased to 2.85 L ?

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}= \\
& \mathrm{V}_{\mathrm{i}}= \\
& \mathrm{T}_{\mathrm{i}}= \\
& \hline \mathrm{P}_{\mathrm{f}}= \\
& \mathrm{V}_{\mathrm{f}}= \\
& \mathrm{T}_{\mathrm{f}}=
\end{aligned}
$$

2. When liquid nitrogen was poured over the 1.85 L balloon at room temperature $\left(22^{\circ} \mathrm{C}\right)$, its temperature dropped to 77 K . What was the new volume of the balloon?

$$
\mathrm{P}_{\mathrm{i}}=
$$

$$
\mathrm{V}_{\mathrm{i}}=
$$

$$
\mathrm{T}_{\mathrm{i}}=
$$

$$
\mathrm{P}_{\mathrm{f}}=
$$

$$
\mathrm{V}_{\mathrm{f}}=
$$

$$
\mathrm{T}_{\mathrm{f}}=
$$

3. A container of methane gas is at STP. The container is placed in a hot car, which warms it to $45.0^{\circ} \mathrm{C}$. What will be its new pressure, in psi?

$$
\mathrm{P}_{\mathrm{i}}=
$$

$$
\mathrm{V}_{\mathrm{i}}=
$$

$$
\mathrm{T}_{\mathrm{i}}=
$$

$$
\mathrm{P}_{\mathrm{f}}=
$$

$\mathrm{V}_{\mathrm{f}}=$
$\mathrm{T}_{\mathrm{f}}=$
4. The potato chip problem: A bag of cajun-spiced potato chips is packaged \& sold in New Orleans, where the atmospheric pressure is 1.00 atm . The volume of air inside the bag is 2.50 L . You buy the chips \& drive them to Denver, where the atmospheric pressure is 605 mmHg . What will be the volume of the air in the bag in Denver?

1. What temperature (K) would 2.50 moles of chlorine gas have at 591 mmHg in a 25.0 L tank?

$$
\mathrm{P}=
$$

$\mathrm{V}=$
$\mathrm{n}=$
$\mathrm{R}=0.0821$
$T=$
2. Under what pressure (atm) could 55.8 grams of SO_{3} could fit in a $1.00 \mathrm{dm} \times 2.00 \mathrm{dm} \times 4.00 \mathrm{dm}$ box at $85.0^{\circ} \mathrm{C}$?
$\left(1 \mathrm{dm}^{3}=1 \mathrm{~L}\right)$
$\mathrm{P}=$
$\mathrm{V}=$
$\mathrm{n}=$
$\mathrm{R}=0.0821$
$\mathrm{T}=$
3. What is the pressure (in psi) inside the 1200 mL tank of sulfur hexafluoride containing 171 grams of gas at 299 K ?
$\mathrm{P}=$
$\mathrm{V}=$
$\mathrm{n}=$
$\mathrm{R}=0.0821$
$\mathrm{T}=$
4. How many molecules of nitrogen can fit in your lungs at STP? (approx. volume lungs is 5.8 L)

$$
\mathrm{P}=
$$

$\mathrm{V}=$
$\mathrm{n}=$
$\mathrm{R}=0.0821$
$T=$
How many molecules of oxygen...?
$\begin{array}{lllllll}\text { Ans (IRO): } 0.012 & 0.041 & 2.56 & 94.8 & 350 & 1.6 \times 10^{23} & 1.6 \times 10^{23}\end{array}$ Units (IRO): g atm psi mol K molecules molecules

Other uses for the IDEAL GAS LAW:

What is the density of the air in this room? (assume standard room conditions of $1 \mathrm{~atm} \& 25^{\circ} \mathrm{C}$)
29.26 g of gas has a volume of 15.2 L at $815 \mathrm{mmHg} \& 25.0^{\circ} \mathrm{C}$. What is the molecular weight of this gas?

packet 6 objectives (know this for quiz)

- WS 6.1- how different things work (drinking straws, suction cups, vacuums, barometers)
-WS 6.1- how to convert between different pressures
- WS 6.2- definition of STP, how to convert ${ }^{\circ} \mathrm{C}$ into K
- WS 6.3- how to use combined gas law to solve problems
-WS 6.4- how to use ideal gas law for density problems, molecular weight problems
- WS 6.3 \& 6.4- know the relationships between pressure, volume, temperature, density (direct vs inverse)
- WS 6.5- use Dalton's law to calculate partial pressures of gases; how gases behave when they share a container
-WS 6.6- use Graham's law to calculate the velocity of gases; know about the gas effusion demos
- WS 6.7- how to read a phase diagram for a specific substance, especially methane (we did a demo with this)
- WS 6.8- be able to describe the evaporation and boiling processes
- WS 6.11- basic info from student presentations
- Boyle's Law Lab- calculate atmospheric pressure from lab data
- Cartesian diver lab- how the gas laws apply to the operation of the divers
- Absolute Zero lab- know how to interpret the graph you made
- Wet Dry Ice Lab- be familiar with the phase diagram for CO 2

Know this for bonus points (or for the make-up quiz):

- how to calculate suction cup lift (WS 6.1 class notes), • gas stoichiometry (WS 6.4 side 2)

WS 6.5 Dalton's Law \& Partial Pressure

WS 6.6 Graham's Law

> Graham's Law
> $\operatorname{mv}^{2}(\mathrm{~A})=\operatorname{mv}^{2}$
$\mathrm{H}_{2} \& \mathrm{SF}_{6}$ share the same container.
Which will move faster?

If the H_{2} is moving at $\mathbf{8 2 5} \mathbf{~ m p h}$, what's the velocity of the SF_{6} ?

