$\qquad$
$\qquad$
(check them off as you complete them)
Due Date
Mon 1/7 $\qquad$
Assignment Do WS 6.1 (visit website!) Do WS 6.2

Tue 1/8 $\qquad$ Read Abs o Lab

Wed 1/9 $\qquad$ turn-in Abs OLab Read Boyle's Law Lab

Thur 1/10 $\qquad$ turn-in Boyle's Law Lab
$\qquad$ Do WS 6.3

Fri 1/11 $\qquad$ Do WS 6.4 (\#1-10)

Mon 1/14 $\qquad$ Do WS 6.4 (\#11-16)

Tues 1/15 (mini-quiz today)
Wed 1/16 $\qquad$ Finish WS 6.4

Thur 1/17 $\qquad$ Do WS 6.5

Fri 1/18 $\qquad$ Do WS 6.6 (\#1-8)
__ Last Day for Bonus Soda Bottles
Tues 1/22 $\qquad$ Finish WS 6.6 bring optional supplies for cartesian diver lab

## 2-L Soda Bottle Due Today

Wed 1/23 $\qquad$ turn-in Soda Bottle Pressure Lab Write-Up

Thur 1/24 $\qquad$ turn-in Cartesian Diver Lab

Fri 1/25 $\qquad$ Read Wet Dry Ice Lab

Mon 1/28 $\qquad$ Do WS 6.7
$\qquad$ turn-in Wet Dry lce Lab

Tues 1/29 $\qquad$ Read "boiling" from class web-site turn-in Home Lab: Watched Pot Never Boils

Wed 1/30 Do WS 6.8

- Student Presentations Today ••

Thur 1/31
$(-)(-)$ Mustard Day (-)(-)
-• Student Presentations Today .•

## I RECOMMEND YOU GET A HEAD START ON REVIEW SHEET

Fri 2/1

## Do WS 6.11 (Student Presentations)

$$
\text { Do WS } 6.10 \text { (Demo Log) }
$$

$$
\text { Do WS } 6.9 \text { (Review Sheet) }
$$

-• QUIZ TODAY ••/ •• PACKETS DUE TODAY ••
Packets are to be turned in today. Assignment sheet in front, then WS 6.1-WS 6.11 (in that order). Packets should be in a folder, with no other papers inside.
penalties:
no name on top: -1/2
wrong order: -1/2
turning in non pertinent material: -1/2 turning in graded labs: -1/2 no folder or wrong type of folder: -1/2 (use pocket-type folder, not a plain, 3ring, or homemade folder)

## Please Read This Statement:

If you are not here on the day of the quiz, you will need to take the more challenging make-up quiz, unless you've made arrangements with me.

## WS 6.1 Kinetic-Molecular Theory of Gases / Pressure

1. Visit the pack 6 website \& click on "kinetic molecular theory".

Read \& summarize the 5 points of the kinetic-molecular theory - in your own words:
1)
2)
3)
4)
5)
2. What is pressure? Which of the 2 points above accounts for pressure?

How exactly does a gas sample exert a pressure? Use diagrams, as was shown in class:

3. Use diagrams, as was shown in class, to illustrate how an inflated balloon stays stretched. (What are the gas particles inside doing to keep it inflated?) Also, explain what happened to the balloon in the vacuum chamber:
4. How does a suction cup work? Use diagrams:
6. How does a barometer work? Use diagrams. Why is mercury used instead of a cheaper liquid like water?

## WS 6.2 Kinetic Theory - Temperature \& Volume

1. What is kinetic energy? $\qquad$
What is the equation for calculating it? $\qquad$
2. What is temperature, as defined in class? $\qquad$
3. If the kinetic energy of a gas is increased, which variable in the equation for K.E. is also increased? $\qquad$
4. Explain how a gas may react in response to being heated up! $\qquad$
5. What temperature units best represent the average kinetic energy of a gas?
6. Convert the following temperatures into Kelvin:
a) $125^{\circ} \mathrm{C} \quad--->$
b) $15.5^{\circ} \mathrm{C} \quad--->$
c) $-108^{\circ} \mathrm{C} \quad-->$
7. Convert the following temperatures into Celsius:
a) 0 K --->
b) 422 K --->
c) 215.5 K --->
8. What is the freezing point of water in K ? $\qquad$ The boiling point? $\qquad$
9. Explain why it is not possible to have a temperature of 0 K , in terms of kinetic energy.
10. Which 2 of the 5 postulates from WS 6.1 accounts for motion \& temperature of gases? $\qquad$
Combine these 2 postulates together \& restate them in your own sentence:
11. When the kinetic energy of a gas is increased, its $\qquad$ will increase.

- If the gas is inside a solid, rigid container, what ALSO will increase? $\qquad$
- If the gas is inside a flexible container, what ALSO will increase? $\qquad$

12. When the kinetic energy of a gas in increased, its $\qquad$ will never change.
13. What is STP? What's so special about the volume of a gas at STP?
14. Calculate the volume of each gas sample at STP conditions:
a) 2 moles of He
b) 0.75 moles of $\mathrm{O}_{2}$
c) 68.0 grams of $\mathrm{CO}_{2}$
d) 114 grams of $\mathrm{SO}_{3}$

## WS 6.3.1 Combined Gas Law - must show work \& units!

1. A 1.30 L balloon is taken from room temperature $\left(25.0^{\circ} \mathrm{C}\right)$ and placed into a freezer at $-11.5^{\circ} \mathrm{C}$. What is its new volume? (isobaric change)

| $\begin{aligned} & \text { STP: } 0^{\circ} \mathrm{C} \\ & 1 \mathrm{~atm} \\ & (1 \mathrm{~mole}=22.4 \mathrm{~L}) \\ & \hline \end{aligned}$ | $\frac{\mathbf{P}_{i} V_{i}}{T_{i}}=\frac{\mathbf{P}_{\mathrm{f}} \mathbf{V}_{\mathrm{f}}}{\mathbf{T}_{\mathrm{f}}}$ |
| :---: | :---: |
| $1 \mathrm{~atm}=760 \mathrm{mmHg}=14.7 \mathrm{psi}$ |  |

Ans: $\qquad$
2. A container of oxygen gas is at STP. If this sample is put into an oven at $280^{\circ} \mathrm{C}$, what would its pressure be, in atmospheres? (isovolumetric change)

Ans: $\qquad$
3. You have a 2.40 L container of air at STP. From out of nowhere, Bigfoot stomps on it, decreasing the container's volume down to 0.500 L and increasing the pressure to 8.00 atmospheres. How hot, in ${ }^{\circ} \mathbf{C}$, is the air in the container now?

Ans: $\qquad$
4. You're at the zoo and have a big red 1.80 L helium balloon. The barometric pressure today is 785 mmHg . Then you hear the roar of a lion. Startled, you accidentally release the balloon. It flies away. By the time it reaches the clouds, the atmospheric pressure that high is only 0.300 atmospheres. What would be the volume of the balloon up there? (isothermal change)
$\qquad$

## WS 6.3.2 Combined Gas Law - must show work \& units!

5. a) You fill your car's tires to 35 psi when they were cold $\left(12^{\circ} \mathrm{C}\right)$. After driving for 3 hours, your car's tires warm up to $38^{\circ} \mathrm{C}$. What would be the pressure inside your tires now, in psi? (isovolumetric change)
b) What is this pressure in atmospheres?

## Ans: a)

$\qquad$ b) $\qquad$
6. A 12.0 L sample of $\mathrm{NO}_{2}$ gas is at STP. What would be its new volume if its pressure was decreased to 575 mmHg and its temperature was doubled? (isothermal change)

Ans: $\qquad$
7. A 5.75 gram sample of nitrogen gas is at STP. What would be its volume if its temperature was increased to $317^{\circ} \mathrm{C}$ ? (isobaric change) hint- remember nitrogen is diatomic!

Ans: $\qquad$
8. a) A sample of $\mathrm{Cl}_{2}$ gas occupies a volume of 11.4 L at 3.50 atmospheres. When the $\mathrm{Cl}_{2}$ is changed to STP conditions, what will be its volume?
b) How many molecules of $\mathrm{Cl}_{2}$ are there?

Ans: a) $\qquad$ b) $\qquad$ 2.71 E 24
$\begin{array}{lccccccccccc}\text { Ans (IRO+2): } & 1.14 & 1.95 & 2.03 & 2.60 & 6.20 & 9.94 & 31.7 & 38.2 & 3 \\ \text { Units (IRO): } & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{atm} & \mathrm{atm} & \mathrm{psi} & { }^{\circ} \mathrm{C} & \text { molecules }\end{array}$

1. What volume would 3.00 moles of neon gas have at 295 K and 645 mmHg ?

Ans: $\qquad$
2. What volume would 4.3 moles of hydrogen gas occupy at $45^{\circ} \mathrm{C}$ and 3.22 atm ?

Ans: $\qquad$
3. How much pressure would 4.85 moles of He gas exert in a 4.50 L tank at $55^{\circ} \mathrm{C}$ ?

Ans: $\qquad$
4. How many moles of $\mathrm{CO}_{2}$ could fit in a 475 mL bag at $-22^{\circ} \mathrm{C}$ and 855 mmHg ?

Ans: $\qquad$
5. How many grams of oxygen gas are there in a 2.3 L tank at 7.5 atm and $24^{\circ} \mathrm{C}$ ?

Ans: $\qquad$
6. How many molecules of $\mathrm{N}_{2}$ could fit in a 2.00 L soda bottle at $23^{\circ} \mathrm{C}$ and 755 mmHg ?

Ans: $\qquad$
7. What pressure would be needed to fit 35.0 g of $\mathrm{N}_{2}$ gas into a 195 mL flask at $0^{\circ} \mathrm{C}$ ?

Ans: $\qquad$
8. In order to have 1.00 mole of gas fit in a box that measures $1.30 \mathrm{dm} \times 2.40 \mathrm{dm} \times 5.83 \mathrm{dm}$ at 1.00 atm , what must the temperature be (in $\left.{ }^{\circ} \mathrm{C}\right) ?\left(1 \mathrm{~L}=1 \mathrm{dm}{ }^{3}\right)$

Ans: $\qquad$
9. A cube-shaped box is to be made that can hold precisely 40.0 grams of He at 1.05 atm and $55^{\circ} \mathrm{C}$. How long would the box have to be? (remember it's a cube so take the cube root of the volume)

Ans: $\qquad$
 (notice it's at STP?)
$\qquad$
11. a) What is the mass of 1.00 mole of Ne ?
b) What would be the volume of 1.00 mole of Ne at $34^{\circ} \mathrm{C}$ and 0.862 atm ?
c) What would be the density of 1.00 mole of Ne at $34^{\circ} \mathrm{C}$ and 0.862 atm ?
a: $\qquad$ b: $\qquad$ c: $\qquad$
12. What is the density of helium at 2.15 atm and $-45^{\circ} \mathrm{C}$ ?

Ans: $\qquad$
13. Determine the density of fluorine gas at 595 mmHg and 423 K .

Ans: $\qquad$
14. What is the density of helium at STP?

Ans: $\qquad$

WS 6.4.4 Ideal Gas Law: Molecular Weight \& Stoichiometry Problems -
All Work Must Be Shown...
15. 2.58 g of a gas has a volume of 3.97 L at 745 mmHg and $21^{\circ} \mathrm{C}$.

Determine the molecular weight of the gas. What gas might it be?? (see choices in ans. bank)

Ans: $\qquad$
16. 2.58 g of a different gas has a volume of 31.8 L at 745 mmHg and $21^{\circ} \mathrm{C}$.

Determine the molecular weight of the gas. What gas might it be?? (see choices in ans. bank)

Ans: $\qquad$
17. How many moles of sodium will react with 2.6 L of $\mathrm{Cl}_{2}$ gas at 1.15 atm and $39^{\circ} \mathrm{C}$ ?

Hint: use the balanced equation... $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$

Ans: $\qquad$
18. How many grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ will react with 3.29 L of $\mathrm{O}_{2}$ at 1.05 atm and $-34^{\circ} \mathrm{C}$ ? Hint: balance \& use this equation... $\qquad$ $\mathrm{C}_{3} \mathrm{H}_{8}+$ $\mathrm{O}_{2}$---> $\qquad$ $\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$

Ans: $\qquad$

1. A flask contains Ne at 542 mmHg together with Ar at 234 mmHg . What will the total pressure be? (use Dalton's law) $\qquad$
2. A tank is filled with oxygen and nitrogen. The total pressure of the tank is 6.45 atm, and the partial pressure of the nitrogen is 2.07 atm . What is the partial pressure of the oxygen? (use Dalton's law) Ans $\qquad$
3. a) A mixture contains 1.00 moles of $\mathrm{CO}_{2}, 2.00$ moles He , and 3.00 moles of $\mathrm{CH}_{4}$. Which gas has the highest partial pressure? $\qquad$ Which gas has the lowest partial pressure? $\qquad$
b) If the total pressure of the mixture above is 12.0 atm , what is the $\mathrm{PCO}_{2}$ ? $\qquad$

$$
\mathrm{P}_{\mathrm{He}} ?
$$

$\qquad$ $\mathrm{PCH}_{4}$ ?
4. a) 1.25 moles of $N_{2}$ and 6.41 moles of $F_{2}$ are placed together in a 128 L tank at 755 mmHg . What is $\mathrm{N}_{2}$ 's mole fraction in the mixture? What is the partial pressure of the $\mathrm{N}_{2}$ ?
a) Ans: $\qquad$
b) What is $F_{2}$ 's mole fraction, and what is the partial pressure of the $F_{2}$ ?
b) Ans: $\qquad$
$\qquad$
c) What must the temperature $\left({ }^{\circ} \mathrm{C}\right)$ of the mixture be?
$\qquad$
5. a) 3.23 g of Ne and 4.19 g of $\mathrm{CH}_{4}$ are placed together in a tank at 5.34 atm and $23^{\circ} \mathrm{C}$. What is Ne 's mole fraction, and what is the partial pressure of the Ne ?
a) Ans: $\qquad$
b) What must the volume of the tank be? (use ideal gas law)

Ans $\qquad$
6. A tank contains 5.86 g of Ar and 5.77 g of Ne . The partial pressure of the Ar is 237 mmHg . What is Ar's mole fraction and what is the total pressure of the tank?

Ans: $\qquad$
7. A flask contains $2.34 \times 1022$ atoms of $\mathrm{He}, 0.1972$ moles of $\mathrm{CO}_{2}$, and 2.45 g of $\mathrm{N}_{2}$. The partial pressure of the $N_{2}$ is 2.33 atm . a) What is $\mathrm{N}_{2}$ 's mole fraction? b) What is the total pressure of the mixture?
b)

WS 6.5 (page 2)
8. Two gases $\mathbf{A} \& \mathbf{B}$ are placed together in a container. A's partial pressure is greater than $\mathbf{B}$ 's.
a) One reason one gas sample might have a higher pressure than another is because it is at a higher temperature. Why could this not be used to explain why $\mathbf{A}$ has a higher pressure than $\boldsymbol{B}$ ?
b) One reason one gas sample might have a higher pressure than other is because it is confined to a smaller volume. Why could this not be used to explain why $\mathbf{A}$ has a higher pressure than $\mathbf{B}$ ?
c) So, if it's not temperature or volume, what explanation can you offer why $\mathbf{A}$ has a higher pressure than $B$ ?
d) Again, regarding the sample described above, label the following as DT (definitely true), PT (possibly true), or DF (definitely false): ans bank: DT (4) PT (3) DF (3)

1. $\qquad$ There is a greater mass of $\mathbf{A}$ present (compared to $\mathbf{B}$ ) in the mixture.
2. $\qquad$ There is a greater number of moles of $\mathbf{A}$ (compared to $\mathbf{B}$ ) in the mixture.
3. $\qquad$ There is a greater number of particles of $\boldsymbol{A}$ (compared to
$B$ ) in the mixture.
4. $\qquad$ $\mathbf{A}$ is at a higher temperature than $\mathbf{B}$ in the mixture.
5. $\qquad$ A-particles are hitting the inside walls of the container harder on average than B-particles.
6. $\qquad$ A-particles are hitting the inside walls more often on average than B-particles.
7. $\qquad$ A-particles are more concentrated in the container than B-particles.
8. $\qquad$ A-particles don't have as much room to move around as B-particles.
9. $\qquad$ A-particles are heavier on average than B-particles.
10. $\qquad$ A-particles are moving faster on average than B-particles.
11. Equal masses of $\mathbf{P}$ gas and $\mathbf{Q}$ gas are present in a container, yet $\mathbf{P}$ has a greater partial pressure than $\mathbf{Q}$. Is this possible? Explain.
12. Equal number of moles of $X$ gas and $Y$ gas are present in a container, yet $X$ has a greater partial pressure than $Y$. Is this possible? Explain.

## WS 6.6 Graham's Law

1. What exactly is temperature a measurement of? $\qquad$
2. Why is it important to include the word "average" in your answer? $\qquad$
3. What two factors does an object's kinetic energy depend on? $\qquad$ and $\qquad$
4. What specifically is the equation for kinetic energy?
5. Which would increase the kinetic energy of an object more: doubling the object's mass or doubling the objects velocity? $\qquad$ Explain:
6. State Graham's Law as an equation for two gases ( $A$ and $B$ ) at the same temp: $\qquad$
7. Consider two gases, He and $\mathrm{O}_{2}$, at the same temperature...
( $\sqrt{ }$ answer bank below)
Which particles would have greater average kinetic energy? $\qquad$ Which particles are heavier? Which particles would have greater velocity? Which gas would diffuse across the room faster?
8. Two gas samples, one $\mathrm{H}_{2}$ and one $\mathrm{CO}_{2}$, are such that their particles have the same velocity... Which gas molecules have the greater average kinetic energy?
Which gas is at the higher temperature? $\qquad$ Explain:
$\qquad$
. Explain the following two demos using words and diagrams:


The $\mathrm{NH}_{3} / \mathrm{HCl}$ racing demo:


For the following questions, use the Graham's Law equation. Show all work. 10. At a certain temperature, $\mathrm{O}_{2}$ molecules move with an average velocity of 345 mph . At that same temperature, what would be the average velocity of a) He atoms? b) $\mathrm{CO}_{2}$ molecules?

Ans: a) $\qquad$ b)
11. At a certain temperature, $\mathrm{CH}_{4}$ molecules move with an average velocity of $187 \mathrm{~m} / \mathrm{sec}$. At that same temp, gas $X$ particles have an average velocity of $141 \mathrm{~m} / \mathrm{sec}$. a) Is gas $X$ heavier or lighter than $\mathrm{CH}_{4}$ ? b) What is the molecular weight of gas $X$ ? c) What is a possible identity of gas $X$ ?
(see choices in ans. bank)

## Ans: a)

$\qquad$ b) $\qquad$ c) $\qquad$
BONUS A sample of gas is at room temp $\left(22^{\circ} \mathrm{C}\right)$. to what temp $\left({ }^{\circ} \mathrm{C}\right)$ would it have to be taken to cause the average velocity of the particles to double? $\qquad$ ...triple? $\qquad$ (Hint: look back at your answers for \#1 and 4)

Ans \#7-8 (IRO): CO2 CO 2 He He neither O 2
Ans \#10-11 (IRO+5): $28.1 \begin{array}{lllllllllll} & 32.3 & 294 & 469 & 976 & \mathrm{CO} 2 & \mathrm{He} & \mathrm{N} 2 & \mathrm{~F} 2 & \text { Units (IRO): } \mathrm{mph} & \mathrm{mph} \\ \mathrm{g} / \mathrm{mol}\end{array}$

## WS 6．7 Phase Diagrams

Consider the following three phase diagrams for three hypothetical substances：A，B，and C．




1．What is the stable state（s）（ $\mathrm{s}, \mathrm{l}$, or g ）for substance $\mathbf{A}$ at room conditions（ $1.0 \mathrm{~atm} \& 25^{\circ} \mathrm{C}$ ）？ $\qquad$
2．What is the stable state（s）for substance $\mathbf{B}$ at room conditions？ $\qquad$ ．．．for substance $\mathbf{C}$ ？ $\qquad$
3．At 1.6 atm and $50^{\circ} \mathrm{C}$ ，what is／are the stable state（s）for $\mathbf{A}$ ？ $\qquad$ ．．．for B？ $\qquad$ ．．for C？ $\qquad$
4．At 1.0 atm what are the melting point（mp）boiling point（bp）and sublimation point（ $\mathbf{s p}$ ）for each of the three substances？（use＂NA＂for not applicable）
A：$m p=$ bp＝
B： $\mathrm{mp}=\quad \mathrm{bp}=$
C： $\mathrm{mp}=$
$\mathrm{bp}=$ $\qquad$ $\mathrm{sp}=$

5．At 0.4 atm what are the melting point（mp）boiling point（bp）and sublimation point（sp）for each of the three substances？（use＂NA＂for not applicable）
A：$m p=$
$\mathrm{bp}=$
$\mathrm{sp}=$
B：$m p=$
bp＝
$\mathrm{sp}=$
C：$m p=$
$b p=$
$\mathrm{sp}=$

6．As pressure increases，what happens（ $\uparrow, \downarrow$ ，or ---$)$ to the bp of $\mathbf{A}$ ？ $\qquad$ ．．．of B？ $\qquad$ ．．．of C？
7．As pressure increases，what happens（ $\uparrow, \downarrow$ ，or ---$)$ to the mp of $\mathbf{A}$ ？ $\qquad$ ．．．of B？ $\qquad$ ．．．of C？
$\qquad$

8．At $50^{\circ} \mathrm{C}$ ，what pressure is required to condense gaseous $\mathbf{A}$ into a liquid？ $\qquad$ $B$ ？ $\qquad$ C？
9．What is the significance of the triple point of a substance？
10．What is the triple point（ $\mathrm{P} \& \mathrm{~T}$ ）for $\mathbf{A}$ ？ $\qquad$ ／ $\qquad$ ．．．for $\mathbf{B}$ ？ $\qquad$ 1 $\qquad$ ．．．for C？ $\qquad$ 1

11．Some solid $\mathbf{A}$ is at $0.6 \mathrm{~atm} \& 40^{\circ} \mathrm{C}$ ．What would happen（melt，boil，freeze？？？）if the pressure were increased？ $\qquad$ ．．．if the pressure were decreased？ $\qquad$
12．Some liquid $\mathbf{B}$ is at $0.4 \mathrm{~atm} \&-20^{\circ} \mathrm{C}$ ．What would happen（melt，boil，freeze？？？）if the pressure were increased？ $\qquad$ ．．．if the pressure were decreased？ $\qquad$
13．When you heat up a sample of iodine at room conditions，it changes directly from a solid to a gas．
What does this imply about iodine＇s triple point pressure？ $\qquad$ temp？ $\qquad$
14．When a sample of methane gas is cooled，it condenses to a liquid and then freezes to a solid．
What does this imply about methane＇s triple point pressure？ $\qquad$ temp？ $\qquad$
15．How is a phase diagram like a map？
 $41 \quad 4181 \quad N A \quad N A$ melt sublime freeze boil 个个个个 $\downarrow$ —

Use class notes \& direct observations of the boiling process to fill out the following explanation sheet. Also, fill in the figures at right showing a liquid \& its vapor in a closed container.

## Evaporation and vapor pressure:

In a liquid, some of the $\qquad$ moving near the surface have enough energy to escape into the $\qquad$ state. This process is known as $\qquad$ . If this takes place in a(n) $\qquad$ container, the liquid will eventually all evaporate away. But if it takes place in a $\qquad$ container (with a lid), then the vapor molecules will start to accumulate over the liquid's surface as shown in Fig 1 at right. These vapor molecules might bounce back into the liquid and get "re-captured". This is known as $\qquad$ As more evaporation takes place, the concentration of vapor molecules $\qquad$ which in turn increases the rate of $\qquad$ . In a relatively short time, the rate will increase to the point where it equals the $\qquad$ rate, and
$\square$
Fig 2
the system will be at a state of $\qquad$ as shown in fig 2 at right. This vapor exerts a $\qquad$ against the inside walls of the container. This is known as the
$\qquad$ of the liquid. If the temperature of the system were increased, it
would cause the $\qquad$ rate to increase (as shown in Fig 3), which would in turn cause the concentration of $\qquad$ molecules to increase. This would cause the

Fig 3
$\qquad$ rate to increase, and the system would reach a new $\qquad$ as
shown in Fig 4. Since there are more vapor $\qquad$ bouncing around at higher
$\qquad$ , the $\qquad$ would also be higher. In general, as increases, $\qquad$ also increases. The chart at right below
shows the $\qquad$ (in mmHg ) of various $\qquad$ at a range of different
$\qquad$ (in ${ }^{\circ} \mathrm{C}$ ). Note that at $20^{\circ} \mathrm{C}$, water has a vapor pressure of $\qquad$ mmHg , whereas liquid $A$ has a vapor pressure of $\qquad$ mmHg . This higher vapor pressure is caused by liquid $A$ evaporating at a $\qquad$ rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be $\qquad$ . Note that liquid B has a much $\qquad$ vapor pressure than water at any given $\qquad$ . This would imply that it is less $\qquad$ than water and thus the attractive forces between its molecules are $\qquad$ .

## Boiling:

| temp ( ${ }^{\circ} \mathrm{C}$ ) | V |
| :---: | :---: |
|  | water |
| 0 | 5 |
| 20 | 18 |
| 40 | 55 |
| 60 | 149 |
| 80 | 355 |
| 100 | 760 |
| 120 | 1520 |
| 140 | 2710 |
| 160 | 4515 |
| 180 | 7600 | to cause them to fly some of the $\qquad$ at the bottom might absorb sufficient $\qquad$ apart and form a small $\qquad$ of water vapor. If the temperature of the surrounding water is only $60^{\circ} \mathrm{C}$, then the $\qquad$ pushing outward on the walls of that bubble will only be $\qquad$ mmHg . The atmospheric pressure pushing downward on the water's surface (assuming standard pressure) will be $\qquad$ mmHg . This greater pressure from the outside causes the bubble to collapse back into a $\qquad$ state. If one watches a pot of water on the stove, one can easily observe these $\qquad$ form and then $\qquad$ long before the water comes to a true $\qquad$ .

Ans for side 1 (IAO+3): boil bubble bubbles closed collapse condensation condensation condensation condensation energy equilibrium equilibrium evaporation evaporation evaporation greater high increases liquid liquids lower mmHg molecules molecules molecules open pressure pressure pressure pressure pressure pressure pressure stronger temp. temp. temps. temps. vapor vapor vapor vapor vapor vapor vapor volatile volatile 18108149760

## (WS 6.8 side 2)

When the temperature is increased further, up to $80^{\circ} \mathrm{C}$, the bubbles that form will have vapor molecules pushing outward with a $\qquad$ of 355 mmHg . Still, this pressure will not be great enough to withstand the $\qquad$
$\qquad$ of 760 $\qquad$ pushing downward from the outside of the container, thus the bubble will again $\qquad$ At $99^{\circ} \mathrm{C}$, the $\qquad$ of water is 733 mmHg , still not enough... and then finally at $\qquad$ ${ }^{\circ} \mathrm{C}$, the vapor pressure of water reaches
$\qquad$
$\qquad$ , where it can finally match the outside pressure of $\qquad$ . This allows the bubble to persist, so that more molecules can vaporize into it. As the bubble grows, it quickly breaks lose from the bottom and floats upwards. If on the way up it encounters water that has not quite reached ___ ${ }^{\circ} \mathrm{C}$, the bubble will again collapse. It is not until the entire container of water has reached $\qquad$ ${ }^{\circ} \mathrm{C}$ that the water will be at a full $\qquad$ .
Now... if you were trying to boil water at high $\qquad$ , like Denver, where the surrounding atmospheric pressure is a lot $\qquad$ than the standard $\qquad$ mmHg , then the water would $\qquad$ at a somewhat $\qquad$ . If you had water in a bell jar and brought the $\qquad$ down to 55 mmHg , then the water would $\qquad$ at only ${ }^{\circ} \mathrm{C}$. By the same token, if you put water in a
$\qquad$ pressure environment, such as a $\qquad$ cooker or an auto- $\qquad$ , where the pressure is taken way up to $\qquad$ mmHg , then the water needs to be $160^{\circ} \mathrm{C}$ before it could $\qquad$ .
Looking back at the table on side \#1, we can see that liquid A, which was $\qquad$ volatile than water would have its $\qquad$ pressure reach standard pressure ( $\qquad$ mmHg ) at a much $\qquad$ temperature. This means that liquid A would $\qquad$ at a much $\qquad$ than water. In fact, it would boil around ___ ${ }^{\circ} \mathrm{C}$ (estimating from the table). Similarly, liquid B which was
$\qquad$ than water, would have to be taken to a $\qquad$ for its
$\qquad$ to reach 760 mmHg . Thus it would have a much $\qquad$ boiling point
(around ____ ${ }^{\circ} \mathrm{C}$, estimated from the table).
In general then, it can be said that a $\qquad$ will always $\qquad$ when its $\qquad$
$\qquad$ matches the $\qquad$ pushing down on the liquid's $\qquad$ .
To say that the boiling point of water is $\qquad$ ${ }^{\circ} \mathrm{C}$ is a bit misleading. One should say that the
$\qquad$ _____ depends on the $\qquad$ , and that it just happens to be____ ${ }^{\circ} \mathrm{C}$ at standard pressure!!!
Ans for side 2(IAO+4): altitudes atmospheric-(x 4) boil boil boil boil boil boil boiling clave collapse evaporation high higher higher less liquid low lower lower lower lower $\mathrm{mmHg} m \mathrm{mHg}$ molecules more point pressure surface temp. temp. temp. vapor vapor vapor vapor volatile $40 \begin{array}{llllllllllll} & 62 & 80 & 100 & 100 & 100 & 100 & 100 & 141 & 760 & 760 & 760\end{array} 4515$

## Follow-up questions:

Identical eggs are placed in identical pots of water on identical stoves, one here in St. Louis, and one in Denver. The stoves are turned on at the same time.

1) Which water will heat up faster (St. Louis, Denver, neither, both) and why?
2) Which water will boil sooner (St. Louis, Denver, neither, both) and why?
3) Which water will boil at a higher temperature (St. Louis, Denver, neither, both) and why?
4) Which water will boil when its vapor pressure matches atmospheric pressure, and why?
5) Which egg will get done first (St. Louis, Denver, neither, both) and why?

## WS 6.9 Review Sheet pg 1

1. To what temperature $\left({ }^{\circ} \mathrm{C}\right)$ would 12.3 g of He have to be cooled to fit in a 34.0 L tank at 1.17 atm?

Ans: $\qquad$
2. What would be the density of $\mathrm{CH}_{4}$ at $132^{\circ} \mathrm{C}$ and 725 mmHg ?

Ans: $\qquad$
3. A gas sample occupies a volume of 34.8 L at 2.56 atm . What volume would it occupy at 3.47 atm ?

Ans: $\qquad$
4. A 2.79 g sample of gas occupies a space of 735 mL at 1.78 atm and $-21^{\circ} \mathrm{C}$. What is the molecular weight of the gas? What gas might it be: $\mathrm{H} 2, \mathrm{Ne}$, or CO 2 ?

Ans: $\qquad$ Ans: $\qquad$
5. If Ne particles are moving with an average velocity of $17.4 \mathrm{~m} / \mathrm{sec}$, how fast would the $\mathrm{CH}_{4}$ particles be moving? How about the $\mathrm{CO}_{2}$ ? (all gases are in the same container \& therefore the same temp!)

Ans: $\qquad$ Ans: $\qquad$

## 6. The gas laws \& relationships among the variables

- Boyle's Law states that $\qquad$ and volume are inversely related to each other. This is why a balloon expands in a $\qquad$ _.
- Charles's Law states that volume and temperature are $\qquad$ related to each other. This is why a balloon shrinks when liquid $\qquad$ is poured on it.
- Gay-Lussac's Law states that pressure varies directly with temperature. This is why areosol cans become $\qquad$ when the pressure is $\qquad$

Ans \#6: colder directly nitrogen pressure released vacuum
Ans (IRO) \#1-5: $-115, \quad 0.458, \quad 11.8, \quad 19.6, \quad 25.7, \quad 44.0, \quad 52.4 \quad$ UNITS: ${ }^{\circ} \mathrm{C} \quad \mathrm{g} / \mathrm{L} \quad \mathrm{L} \quad \mathrm{g} / \mathrm{mol} \quad \mathrm{m} / \mathrm{sec}$

## WS 6.9 review sheet page 2

7. In the "wet dry ice lab", we placed a sample of $\qquad$ (which is actually solid
$\qquad$ , not water) in a plastic $\qquad$ and placed a metal $\qquad$ around the stem, then squeezed down on this with a pair of $\qquad$ . This helped keep the $\qquad$ in the pipet as the dry ice $\qquad$ , thus building up the $\qquad$ and taking the sample to the $\qquad$
$\qquad$ , that unique $\qquad$ and $\qquad$ on the $\qquad$ diagram where all three phases
$\qquad$ , $\qquad$ and $\qquad$ ) can exist together and where all three processes
$\qquad$
$\qquad$ and $\qquad$ ) can occur at the same time.
8. Bobby wanted to boil some acetone (a liquid which is somewhat
$\qquad$ Remembering what he learned in class, that a will always $\qquad$ when its $\qquad$ matches $\qquad$ .
$\qquad$ , Bobby decides there are two ways he can boil the liquid: he  can $\qquad$ the $\qquad$ to $\qquad$ ${ }^{\circ} \mathrm{C}$, at which point its $\qquad$
$\qquad$ would equal the standard $\qquad$ psi, or he could $\qquad$ the

| temp <br> $\left({ }^{\circ} \mathrm{C}\right)$ | v.p. of acetone <br> (psi) |
| :---: | :---: |
| 25 | 4.8 |
| 50 | 7.4 |
| 75 | 14.7 |
| 100 | 27.9 |

$\qquad$ to around $\qquad$ psi, at which point the liquid would $\qquad$ .
9. Suzi does the "Boyle's Law lab" and collects the data at right. Use any two data lines to determine what value she gets for atmospheric pressure. (any 2 data lines will work)


| gauge press. <br> (psi) | vol. <br> $(\mathrm{mL})$ |
| :---: | :---: |
| 42.1 | 2.9 |
| 31.5 | 3.6 |
| 22.7 | 4.5 |
| 17.9 | 5.2 |

Ans: $\qquad$
10. 13.5 g of $\mathrm{CO}_{2}, 13.5 \mathrm{~g}$ of Ne and 13.5 g of $\mathrm{CH}_{4}$ are all placed together in a tank at 762 mmHg . What is the partial pressure of the $\mathrm{CO}_{2}$, the Ne , and the $\mathrm{CH}_{4}$ ?

Ans: $\qquad$ Ans: $\qquad$ Ans: $\qquad$
11. Which gas in the tank above is moving the fastest?? $\qquad$
Ans (IRO+3): 4.8 12.6 14.7 15.7 75 129 $\begin{array}{lllllllll}216 & 280 & 354 & \text { atmospheric boil boil boiling chemistry }\end{array}$ clamp CH4 CO2 decrease dry force gas gas ice increase liquid liquid melting more O 2 phase pipet pliers point pressure pressure pressure pressure pressure quickly solid sublimed subliming temp. temp. triple vapor vapor
Units (IRO): atm psi mmHg mmHg $\quad \mathrm{mmHg}$

## WS 6.10 Gas Laws Demos

Throughout this packet, you will be seeing various gas-related demos.
Keep track of some by taking notes and/or making diagrams here.

| Methane Mamba | The Vapor Ramp |
| :--- | :--- |
| H्Hot Air Balloon |  |

WS 6.11.1 - Student Presentations page 1
The Bends

1) What gas causes the bends? $\qquad$ When pressure increases, so does gas solubility. Whose gas law is this ?
2) What are some of the symptoms of the bends?
3) What gas to divers breath in order to avoid the bends?
4) What is a dive chart?
5) How are the bends treated?

## CO Poisoning

1) How is CO produced?
2) Why is it so dangerous? How does its reaction with hemoglobin compare to oxygen's?
3) How do people avoid CO poisoning?
4) How is CO poisoning treated?

WS 6.11.2 - Student Presentations page 2
Ozone Depletion

1) What is the formula for ozone? $\qquad$ How is it produced?
2) Up there ozone is our friend, down here it's our enemy! Explain this!
3) What is depleting our ozone layer?
4) Where is this reported hole in the ozone layer and why is it there? What are the long term consequences of a widening hole in the layer?
5) What are people doing to stop ozone depletion?

## The Greenhouse Effect

1) What causes the greenhouse effect? Why is a little greenhouse effect good?
2) What are the long term consequences of the greenhouse effect?
3) Some experts say the greenhouse effect will lead to terrible flooding of our coastal cities \& turn the midwest into a desert. Explain this.
4) What is being done to deal with the problem?
5) How does this tie in with the whole nuclear vs. coal burning power plant issue?
