WS 6.9 Review Sheet pg 1

1. To what temperature $\left({ }^{\circ} \mathrm{C}\right)$ would 12.3 g of He have to be cooled to fit in a 34.0 L tank at 1.17 atm?

Ans: \qquad
2. What would be the density of CH_{4} at $132^{\circ} \mathrm{C}$ and 725 mmHg ?

Ans: \qquad
3. A gas sample occupies a volume of 34.8 L at 2.56 atm . What volume would it occupy at 3.47 atm ?

Ans: \qquad
4. A 2.79 g sample of gas occupies a space of 735 mL at 1.78 atm and $-21^{\circ} \mathrm{C}$. What is the molecular weight of the gas? What gas might it be: $\mathrm{H} 2, \mathrm{Ne}$, or CO 2 ?

Ans: \qquad Ans: \qquad
5. If Ne particles are moving with an average velocity of $17.4 \mathrm{~m} / \mathrm{sec}$, how fast would the CH_{4} particles be moving? How about the CO_{2} ? (all gases are in the same container \& therefore the same temp!)

Ans: \qquad Ans: \qquad

6. The gas laws \& relationships among the variables

- Boyle's Law states that \qquad and volume are inversely related to each other. This is why a balloon expands in a \qquad _.
- Charles's Law states that volume and temperature are \qquad related to each other. This is why a balloon shrinks when liquid \qquad is poured on it.
- Gay-Lussac's Law states that pressure varies directly with temperature. This is why areosol cans become \qquad when the pressure is \qquad

Ans \#6: colder directly nitrogen pressure released vacuum
Ans (IRO) \#1-5: $-115, \quad 0.458, \quad 11.8, \quad 19.6, \quad 25.7, \quad 44.0, \quad 52.4 \quad$ UNITS: ${ }^{\circ} \mathrm{C} \quad \mathrm{g} / \mathrm{L} \quad \mathrm{L} \quad \mathrm{g} / \mathrm{mol} \quad \mathrm{m} / \mathrm{sec}$

WS 6.9 review sheet page 2

7. In the "wet dry ice lab", we placed a sample of \qquad (which is actually solid
\qquad , not water) in a plastic \qquad and placed a metal \qquad around the stem, then squeezed down on this with a pair of \qquad . This helped keep the \qquad in the pipet as the dry ice \qquad , thus building up the \qquad and taking the sample to the \qquad
\qquad , that unique \qquad and \qquad on the \qquad diagram where all three phases
\qquad , \qquad and \qquad) can exist together and where all three processes
\qquad
\qquad and \qquad) can occur at the same time.
8. Bobby wanted to boil some acetone (a liquid which is somewhat
\qquad Remembering what he learned in class, that a will always \qquad when its \qquad matches \qquad .
\qquad , Bobby decides there are two ways he can boil the liquid: he can \qquad the \qquad to \qquad ${ }^{\circ} \mathrm{C}$, at which point its \qquad
\qquad would equal the standard \qquad psi, or he could \qquad the

temp $\left({ }^{\circ} \mathrm{C}\right)$	v.p. of acetone (psi)
25	4.8
50	7.4
75	14.7
100	27.9

\qquad to around \qquad psi, at which point the liquid would \qquad .
9. Suzi does the "Boyle's Law lab" and collects the data at right. Use any two data lines to determine what value she gets for atmospheric pressure. (any 2 data lines will work)

gauge press. (psi)	vol. (mL)
42.1	2.9
31.5	3.6
22.7	4.5
17.9	5.2

Ans: \qquad
10. 13.5 g of $\mathrm{CO}_{2}, 13.5 \mathrm{~g}$ of Ne and 13.5 g of CH_{4} are all placed together in a tank at 762 mmHg . What is the partial pressure of the CO_{2}, the Ne , and the CH_{4} ?

Ans: \qquad Ans: \qquad Ans: \qquad
11. Which gas in the tank above is moving the fastest?? \qquad
Ans (IRO+3): 4.8 12.6 14.7 15.7 75 129 $\begin{array}{lllllllll}216 & 280 & 354 & \text { atmospheric boil boil boiling chemistry }\end{array}$ clamp CH4 CO2 decrease dry force gas gas ice increase liquid liquid melting more O 2 phase pipet pliers point pressure pressure pressure pressure pressure quickly solid sublimed subliming temp. temp. triple vapor vapor
Units (IRO): atm psi mmHg mmHg $\quad \mathrm{mmHg}$

