Use class notes \& direct observations of the boiling process to fill out the following explanation sheet. Also, fill in the figures at right showing a liquid \& its vapor in a closed container.

Evaporation and vapor pressure:

In a liquid, some of the \qquad moving near the surface have enough energy to escape into the \qquad state. This process is known as \qquad . If this takes place in a(n) \qquad container, the liquid will eventually all evaporate away. But if it takes place in a \qquad container (with a lid), then the vapor molecules will start to accumulate over the liquid's surface as shown in Fig 1 at right. These vapor molecules might bounce back into the liquid and get "re-captured". This is known as \qquad As more evaporation takes place, the concentration of vapor molecules \qquad which in turn increases the rate of \qquad In a relatively short time, the rate will increase to the point where it equals the \qquad rate, and
\square
Fig 2
the system will be at a state of \qquad as shown in fig 2 at right. This vapor exerts a \qquad against the inside walls of the container. This is known as the
\qquad of the liquid. If the temperature of the system were increased, it
would cause the \qquad rate to increase (as shown in Fig 3), which would in turn cause the concentration of \qquad molecules to increase. This would cause the

Fig 3
\qquad rate to increase, and the system would reach a new \qquad as
shown in Fig 4. Since there are more vapor \qquad bouncing around at higher
\qquad , the \qquad would also be higher. In general, as
\qquad increases, \qquad also increases. The chart at right below
shows the \qquad (in mmHg) of various \qquad at a range of different
\qquad (in ${ }^{\circ} \mathrm{C}$). Note that at $20^{\circ} \mathrm{C}$, water has a vapor pressure of \qquad mmHg , whereas liquid A has a vapor pressure of \qquad mmHg .
This higher vapor pressure is caused by liquid A evaporating at a \qquad rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be \qquad . Note that liquid B has a much \qquad vapor pressure than water at any given \qquad . This would imply that it is less \qquad than water and thus the attractive forces between its molecules are \qquad .

Boiling:

temp (${ }^{\circ} \mathrm{C}$)	vapor pressure (mmHg)		
	$\frac{\text { water }}{}$	liquid A	liquid B 0
20	18	108	2
40	55	303	4
60	149	701	27
80	355	1420	75
100	760	2514	178
120	1520	4276	380
140	2710	7278	748
160	4515	11051	1321
180	7600	16728	2219

When water is heated (from beneath) in an open container, some of the \qquad at the bottom might absorb sufficient \qquad to cause them to fly apart and form a small \qquad of water vapor. If the temperature of the surrounding water is only $60^{\circ} \mathrm{C}$, then the \qquad pushing outward on the walls of that bubble will only be \qquad mmHg . The atmospheric pressure pushing downward on the water's surface (assuming standard pressure) will be \qquad mmHg . This greater pressure from the outside causes the bubble to collapse back into a \qquad state. If one watches a pot of water on the stove, one can easily observe these \qquad form and then \qquad long before the water comes to a true \qquad .

Ans for side 1 (IAO+3): boil bubble bubbles closed collapse condensation condensation condensation condensation energy equilibrium equilibrium evaporation evaporation evaporation greater high increases liquid liquids lower mmHg molecules molecules molecules open pressure pressure pressure pressure pressure pressure pressure stronger temp. temp. temps. temps. vapor vapor vapor vapor vapor vapor vapor volatile volatile 18108149760

(WS 6.8 side 2)

When the temperature is increased further, up to $80^{\circ} \mathrm{C}$, the bubbles that form will have vapor molecules pushing outward with a \qquad of 355 mmHg . Still, this pressure will not be great enough to withstand the \qquad
\qquad of 760 \qquad pushing downward from the outside of the container, thus the bubble will again \qquad At $99^{\circ} \mathrm{C}$, the \qquad of water is 733 mmHg , still not enough... and then finally at \qquad ${ }^{\circ} \mathrm{C}$, the vapor pressure of water reaches
\qquad
\qquad , where it can finally match the outside pressure of \qquad . This allows the bubble to persist, so that more molecules can vaporize into it. As the bubble grows, it quickly breaks lose from the bottom and floats upwards. If on the way up it encounters water that has not quite reached ___ ${ }^{\circ} \mathrm{C}$, the bubble will again collapse. It is not until the entire container of water has reached \qquad ${ }^{\circ} \mathrm{C}$ that the water will be at a full \qquad .
Now... if you were trying to boil water at high \qquad , like Denver, where the surrounding atmospheric pressure is a lot \qquad than the standard \qquad mmHg , then the water would \qquad at a somewhat \qquad . If you had water in a bell jar and brought the \qquad down to 55 mmHg , then the water would \qquad at only ${ }^{\circ} \mathrm{C}$. By the same token, if you put water in a
\qquad pressure environment, such as a \qquad cooker or an auto- \qquad , where the pressure is taken way up to \qquad mmHg , then the water needs to be $160^{\circ} \mathrm{C}$ before it could \qquad .
Looking back at the table on side \#1, we can see that liquid A, which was \qquad volatile than water would have its \qquad pressure reach standard pressure (\qquad mmHg) at a much \qquad temperature. This means that liquid A would \qquad at a much \qquad than water. In fact, it would boil around ___ ${ }^{\circ} \mathrm{C}$ (estimating from the table). Similarly, liquid B which was
\qquad than water, would have to be taken to a \qquad for its
\qquad to reach 760 mmHg . Thus it would have a much \qquad boiling point
(around ____ ${ }^{\circ} \mathrm{C}$, estimated from the table).
In general then, it can be said that a \qquad will always \qquad when its \qquad
\qquad matches the \qquad pushing down on the liquid's \qquad .
To say that the boiling point of water is \qquad ${ }^{\circ} \mathrm{C}$ is a bit misleading. One should say that the
\qquad _____ depends on the \qquad , and that it just happens to be____ ${ }^{\circ} \mathrm{C}$ at standard pressure!!!
Ans for side 2(IAO+4): altitudes atmospheric-(x 4) boil boil boil boil boil boil boiling clave collapse evaporation high higher higher less liquid low lower lower lower lower $\mathrm{mmHg} m \mathrm{mHg}$ molecules more point pressure surface temp. temp. temp. vapor vapor vapor vapor volatile $40 \begin{array}{llllllllllll} & 62 & 80 & 100 & 100 & 100 & 100 & 100 & 141 & 760 & 760 & 760\end{array} 4515$

Follow-up questions:

Identical eggs are placed in identical pots of water on identical stoves, one here in St. Louis, and one in Denver. The stoves are turned on at the same time.

1) Which water will heat up faster (St. Louis, Denver, neither, both) and why?
2) Which water will boil sooner (St. Louis, Denver, neither, both) and why?
3) Which water will boil at a higher temperature (St. Louis, Denver, neither, both) and why?
4) Which water will boil when its vapor pressure matches atmospheric pressure, and why?
5) Which egg will get done first (St. Louis, Denver, neither, both) and why?
