WS 6.8 Boiling <u>I recommend you do this workshee</u>	<u>et in pen</u>	<u>cil!</u>		
Use class notes & direct observations of the boiling process to fill out the following explanation sheet. Also, fill in the figures at right showing a liquid & its vapor in a closed container.				
In a liquid, some of the moving near the surface	ce have e	nough ei	nergy to	
escape into the state. This process is known	as		If this	
takes place in a(n) container, the liquid will eventual				
if it takes place in a container (with a lid), then the vapor molecules will start to				Fig 1
accumulate over the liquid's surface as shown in Fig 1 at right.	•			
might bounce back into the liquid and get "re-captured". This		-		
As more evaporation takes place, the concentration of vapor				
which in turn increases the rate of In a relative				
rate will increase to the point where it equals the rate, and				Fig 2
- · · · ·				-
the system will be at a state of as shown in Fig 2 at right. This vapor				
exerts a against the inside walls of the container. This is known as the				
of the liquid. If the <u>temperature</u> of the	•			
would cause the rate to increase (as shown in Fig 3), which would in turn				Fig 3
cause the concentration of molecules to increase.				
rate to increase, and the system would reach				
shown in Fig 4. Since there are more vapor bo	-		-	
, the would also be high				
increases, also increase				
shows the (in mmHg) of various	at a r	ange of o	different	Fig 4
(in °C). Note that at 20°C, water has a vapor pre-	ssure of _	mml	⊣g,	
whereas liquid A has a vapor pressure of mmHg.	temp (°C)	va	oor pressure (mmHa)
This higher vapor pressure is caused by liquid A		water	liquid A	liquid B
				indorron D
evaporating at a rate than water, which is a result	0	5	25	2
	20	18	108	4
evaporating at a rate than water, which is a result	20 40	18 55	108 303	4 9
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be	20 40 60	18 55 149	108 303 701	4 9 27
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another.	20 40	18 55	108 303	4 9
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure	20 40 60 80 100 120	18 55 149 355 760 1520	108 303 701 1420 2514 4276	4 9 27 75 178 380
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive	20 40 60 80 100 120 140	18 55 149 355 760 1520 2710	108 303 701 1420 2514 4276 7278	4 9 27 75 178 380 748
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are	20 40 60 80 100 120	18 55 149 355 760 1520	108 303 701 1420 2514 4276	4 9 27 75 178 380 748 1321
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive	20 40 60 80 100 120 140 160	18 55 149 355 760 1520 2710 4515	108 303 701 1420 2514 4276 7278 11051	4 9 27 75 178 380 748
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling :	20 40 60 80 100 120 140 160 180	18 55 149 355 760 1520 2710 4515 7600	108 303 701 1420 2514 4276 7278 11051 16728	4 9 27 75 178 380 748 1321 2219
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling : When water is heated (from beneath) in an open container, some of the at the bottom might absorb suffic	20 40 60 80 100 120 140 160 180	18 55 149 355 760 1520 2710 4515 7600	108 303 701 1420 2514 4276 7278 11051 16728	4 9 27 75 178 380 748 1321 2219 em to fly
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling : When water is heated (from beneath) in an open container, some of the at the bottom might absorb suffic apart and form a small of water vapor. If the temp	20 40 60 80 100 120 140 160 180 cient erature of	18 55 149 355 760 1520 2710 4515 7600 the surre	108 303 701 1420 2514 4276 7278 11051 16728 o cause the	4 9 27 75 178 380 748 1321 2219 em to fly tter is only
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling: When water is heated (from beneath) in an open container, some of the at the bottom might absorb suffic apart and form a small of water vapor. If the temp 60°C, then the pushing outward on the	20 40 60 80 100 120 140 160 180 cient erature of e walls of	18 55 149 355 760 1520 2710 4515 7600 the surre that bub	108 303 701 1420 2514 4276 7278 11051 16728 o cause the ounding wa	4 9 27 75 178 380 748 1321 2219 em to fly tter is only y be
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling: When water is heated (from beneath) in an open container, some of the at the bottom might absorb suffic apart and form a small of water vapor. If the temp 60°C, then the pushing outward on the mmHg. The atmospheric pressure pushing downward on the	20 40 60 80 120 140 160 180 cient erature of e walls of water's su	18 55 149 355 760 1520 2710 4515 7600 the surre that bub rface (as	108 303 701 1420 2514 4276 7278 11051 16728 o cause the ounding wa	4 9 27 75 178 380 748 1321 2219 em to fly tter is only y be ndard
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling : When water is heated (from beneath) in an open container, some of the at the bottom might absorb suffic apart and form a small of water vapor. If the temp 60°C, then the pushing outward on the mmHg. The atmospheric pressure pushing downward on the pressure) will be mmHg. This greater pressure from the	20 40 60 80 100 120 140 160 180 cient erature of e walls of water's su e outside of	18 55 149 355 760 1520 2710 4515 7600 the surre that bub rface (as causes the	108 303 701 1420 2514 4276 7278 11051 16728 o cause the ounding was oble will only suming states he bubble t	4 9 27 75 178 380 748 1321 2219 em to fly tter is only y be ndard o collapse
evaporating at a rate than water, which is a result of its molecules having a weaker attraction for one another. Something that evaporates quickly is said to be Note that liquid B has a much vapor pressure than water at any given This would imply that it is less than water and thus the attractive forces between its molecules are Boiling: When water is heated (from beneath) in an open container, some of the at the bottom might absorb suffic apart and form a small of water vapor. If the temp 60°C, then the pushing outward on the mmHg. The atmospheric pressure pushing downward on the	20 40 60 80 100 120 140 160 180 cient erature of e walls of water's su e outside of the stove	18 55 149 355 760 1520 2710 4515 7600 the surre that bub rface (as causes th , one cau	108 303 701 1420 2514 4276 7278 11051 16728 o cause the ounding wa oble will only suming state he bubble to he asily obs	4 9 27 75 178 380 748 1321 2219 em to fly tter is only y be ndard o collapse serve

Ans for side 1 (IAO+3): boil bubble bubbles closed collapse condensation condensation condensation condensation evaporation evaporation evaporation greater high increases liquid liquids lower mmHg molecules molecules molecules open pressure press

(WS 6.8 side 2)

When the temperature is increased further, up to 80°C, the bubbles that form will have vapor molecules pushing outward with a _____ of 355 mmHg. Still, this pressure will not be great enough to withstand the ______ of 760 _____ pushing downward from the outside of the container, thus the bubble will again _____. At 99°C, the _____ of water is 733 mmHg, still not enough... and then finally at °C, the vapor pressure of water reaches , where it can finally match the outside pressure of . This allows the bubble to persist, so that more molecules can vaporize into it. As the bubble grows, it quickly breaks lose from the bottom and floats upwards. If on the way up it encounters water that has not guite reached °C, the bubble will again collapse. It is not until the entire container of water has reached °C that the water will be at a full . Now... if you were trying to boil water at high _____, like Denver, where the surrounding atmospheric pressure is a lot ______ than the standard ____ mmHg, then the water would _____ at a somewhat . If you had water in a bell jar and brought the down to 55 mmHg, then the water would _____ at only ____°C. By the same token, if you put water in a _____ pressure environment, such as a _____ cooker or an auto-____, where the pressure is taken way up to _____ mmHg, then the water needs to be 160°C before it could _____. Looking back at the table on side #1, we can see that liquid A, which was volatile than water would have its _____ pressure reach standard pressure (_____ mmHg) at a much _____ temperature. This means that liquid A would _____ at a much _____ than water. In fact, it would boil around °C (estimating from the table). Similarly, liquid B which was than water, would have to be taken to a _____ for its to reach 760 mmHg. Thus it would have a much _____ boiling point (around °C, estimated from the table). In general then, it can be said that a _____ will always _____ when its _____ _____ matches the ______ ___ pushing down on the liquid's ______. To say that the boiling point of water is _____°C is a bit misleading. One should say that the _____ depends on the ______ , and that it just *happens* to

be °C at standard pressure!!!

high higher higher less liquid low lower lower lower lower mmHg mmHg molecules more point pressure surface temp. temp. temp. vapor vapor vapor vapor volatile 40 62 80 100 100 100 100 100 141 760 760 760 4515

Follow-up questions:

Identical eggs are placed in identical pots of water on identical stoves, one here in St. Louis, and one in Denver. The stoves are turned on at the same time.

1) Which water will heat up faster (St. Louis, Denver, neither, both) and why?

2) Which water will boil sooner (St. Louis, Denver, neither, both) and why?

3) Which water will boil at a higher temperature (St. Louis, Denver, neither, both) and why?

4) Which water will boil when its vapor pressure matches atmospheric pressure, and why?

5) Which egg will get done first (St. Louis, Denver, neither, both) and <u>whv</u>?