WS 6.6 Graham's Law

1. What exactly is temperature a measurement of? \qquad
2. Why is it important to include the word "average" in your answer? \qquad
3. What two factors does an object's kinetic energy depend on? \qquad and \qquad
4. What specifically is the equation for kinetic energy?
5. Which would increase the kinetic energy of an object more: doubling the object's mass or doubling the objects velocity? \qquad Explain:
6. State Graham's Law as an equation for two gases (A and B) at the same temp: \qquad
7. Consider two gases, He and O_{2}, at the same temperature...
($\sqrt{ }$ answer bank below)
Which particles would have greater average kinetic energy? \qquad Which particles are heavier? Which particles would have greater velocity? Which gas would diffuse across the room faster?
8. Two gas samples, one H_{2} and one CO_{2}, are such that their particles have the same velocity... Which gas molecules have the greater average kinetic energy?
Which gas is at the higher temperature? \qquad Explain:
\qquad
. Explain the following two demos using words and diagrams:

The $\mathrm{NH}_{3} / \mathrm{HCl}$ racing demo:

For the following questions, use the Graham's Law equation. Show all work. 10. At a certain temperature, O_{2} molecules move with an average velocity of 345 mph . At that same temperature, what would be the average velocity of a) He atoms? b) CO_{2} molecules?

Ans: a) \qquad b)
11. At a certain temperature, CH_{4} molecules move with an average velocity of $187 \mathrm{~m} / \mathrm{sec}$. At that same temp, gas X particles have an average velocity of $141 \mathrm{~m} / \mathrm{sec}$. a) Is gas X heavier or lighter than CH_{4} ? b) What is the molecular weight of gas X ? c) What is a possible identity of gas X ?
(see choices in ans. bank)

Ans: a)

\qquad b) \qquad c) \qquad
BONUS A sample of gas is at room temp $\left(22^{\circ} \mathrm{C}\right)$. to what temp $\left({ }^{\circ} \mathrm{C}\right)$ would it have to be taken to cause the average velocity of the particles to double? \qquad ...triple? \qquad (Hint: look back at your answers for \#1 and 4)

Ans \#7-8 (IRO): CO2 CO 2 He He neither O 2
Ans \#10-11 (IRO+5): $28.1 \begin{array}{lllllllllll} & 32.3 & 294 & 469 & 976 & \mathrm{CO} 2 & \mathrm{He} & \mathrm{N} 2 & \mathrm{~F} 2 & \text { Units (IRO): } \mathrm{mph} & \mathrm{mph} \\ \mathrm{g} / \mathrm{mol}\end{array}$

