1. A flask contains Ne at 542 mmHg together with Ar at 234 mmHg . What will the total pressure be? (use Dalton's law)
$\qquad$
2. A tank is filled with oxygen and nitrogen. The total pressure of the tank is 6.45 atm , and the partial pressure of the nitrogen is 2.07 atm . What is the partial pressure of the oxygen? (use Dalton's law)

## Ans

$\qquad$
3. a) A mixture contains 1.00 moles of $\mathrm{CO}_{2}, 2.00$ moles He , and 3.00 moles of $\mathrm{CH}_{4}$. Which gas has the highest partial pressure? $\qquad$ Which gas has the lowest partial pressure? $\qquad$
b) If the total pressure of the mixture above is 12.0 atm, what is the $\mathrm{PCO}_{2}$ ? $\qquad$

$$
\mathrm{P}_{\mathrm{He}} ?
$$

$\qquad$ $\mathrm{PCH}_{4}$ ? $\qquad$
4. a) 1.25 moles of $N_{2}$ and 6.41 moles of $F_{2}$ are placed together in a 128 L tank at 755 mmHg .

What is $N_{2}$ 's mole fraction in the mixture? What is the partial pressure of the $N_{2}$ ?
a) Ans: $\qquad$
$\qquad$
b) What is $F_{2}$ 's mole fraction, and what is the partial pressure of the $F_{2}$ ?
b) Ans: $\qquad$
$\qquad$
c) What must the temperature $\left({ }^{\circ} \mathrm{C}\right)$ of the mixture be?

Ans $\qquad$
5. a) 3.23 g of Ne and 4.19 g of $\mathrm{CH}_{4}$ are placed together in a tank at 5.34 atm and $23^{\circ} \mathrm{C}$. What is Ne's mole fraction, and what is the partial pressure of the Ne ?
a) Ans: $\qquad$
b) What must the volume of the tank be? (use ideal gas law)

Ans
6. A tank contains 5.86 g of Ar and 5.77 g of Ne . The partial pressure of the Ar is 237 mmHg . a) What is Ar's mole fraction and... b) what is the total pressure of the tank?

Ans: a) $\qquad$ b) $\qquad$
7. A flask contains $2.34 \times 1022$ atoms of $\mathrm{He}, 0.1972$ moles of $\mathrm{CO}_{2}$, and 2.45 g of $\mathrm{N}_{2}$. The partial pressure of the $N_{2}$ is 2.33 atm . a) What is $N_{2}$ 's mole fraction? b) What is the total pressure of the mixture?

[^0]WS 5.5 (page 2)
8. Two gases $\mathbf{A} \& \boldsymbol{B}$ are placed together in a container. A's partial pressure is greater than $\mathbf{B}$ 's.
a) One reason one gas sample might have a higher pressure than another is because it is at a higher temperature. Why could this not be used to explain why $\mathbf{A}$ has a higher pressure than $\boldsymbol{B}$ ?
b) One reason one gas sample might have a higher pressure than other is because it is confined to a smaller volume. Why could this not be used to explain why $\mathbf{A}$ has a higher pressure than $\mathbf{B}$ ?
c) So, if it's not temperature or volume, what explanation can you offer why $\mathbf{A}$ has a higher pressure than B ?
d) Again, regarding the sample described above, label the following as $\underline{\mathrm{DT}}$ (definitely true), $\underline{\mathrm{PT}}$ (possibly true), or DF (definitely false):
__ There is a greater mass of $\mathbf{A}$ present (compared to $\mathbf{B}$ ) in the mixture.
$\qquad$ There is a greater number of moles of $\mathbf{A}$ (compared to $\mathbf{B}$ ) in the mixture.
$\qquad$ There is a greater number of particles of $\mathbf{A}$ (compared to $\mathbf{B}$ ) in the mixture.
$\qquad$ $\mathbf{A}$ is at a higher temperature than $\mathbf{B}$ in the mixture.
$\qquad$ A-particles are hitting the inside walls of the container harder on average than B-particles.
$\qquad$ A-particles are hitting the inside walls more often on average than B-particles.
$\qquad$ A-particles are more concentrated in the container than B-particles.
$\qquad$ A-particles don't have as much room to move around as B-particles.
A-particles are heavier on average than B-particles.
A-particles are moving faster on average than B-particles.
9. Equal masses of $\mathbf{P}$ gas and $\mathbf{Q}$ gas are present in a container, yet $\mathbf{P}$ has a greater partial pressure than $\mathbf{Q}$. Is this possible? Explain.
10. Equal number of moles of $X$ gas and $Y$ gas are present in a container, yet $X$ has a greater partial pressure than Y . Is this possible? Explain.


[^0]:    * Cross off answers as you find them. Circle the left over answer! *

    Ans: a)
    b) $\qquad$
     Units(IRO+1): atm atm atm atm atm atm $\mathrm{mmHg} \quad \mathrm{mmHg} \quad \mathrm{mmHg} \quad \mathrm{mmHg} \quad \mathrm{CO} 2 \mathrm{CH} 4 \quad \mathrm{~L} \quad \mathrm{~g}{ }^{\circ} \mathrm{C}$ (more on page 2) $-\mathrm{-}>$

