1. What volume would 3.00 moles of neon gas have at 295 K and 645 mmHg ?

Ans: \qquad
2. What volume would 4.3 moles of hydrogen gas occupy at $45^{\circ} \mathrm{C}$ and 3.22 atm ?

Ans: \qquad
3. How much pressure would 4.85 moles of He gas exert in a 4.50 L tank at $55^{\circ} \mathrm{C}$?

Ans: \qquad
4. How many moles of CO_{2} could fit in a 475 mL bag at $-22^{\circ} \mathrm{C}$ and 855 mmHg ?

Ans: \qquad
5. How many grams of oxygen gas are there in a 2.3 L tank at 7.5 atm and $24^{\circ} \mathrm{C}$?

Ans: \qquad
6. How many molecules of N_{2} could fit in a 2.00 L soda bottle at $23^{\circ} \mathrm{C}$ and 755 mmHg ?

Ans: \qquad
7. What pressure would be needed to fit 35.0 g of N_{2} gas into a 195 mL flask at $0^{\circ} \mathrm{C}$?

Ans: \qquad
8. In order to have 1.00 mole of gas fit in a box that measures $1.30 \mathrm{dm} \times 2.40 \mathrm{dm} \times 5.83 \mathrm{dm}$ at 1.00 atm , what must the temperature be (in $\left.{ }^{\circ} \mathrm{C}\right) ?\left(1 \mathrm{~L}=1 \mathrm{dm}{ }^{3}\right)$

Ans: \qquad
9. A cube-shaped box is to be made that can hold precisely 40.0 grams of He at 1.05 atm and $55^{\circ} \mathrm{C}$. How long would the box have to be? (remember it's a cube so take the cube root of the volume)

Ans: \qquad
 (notice it's at STP?)
\qquad
11. a) What is the mass of 1.00 mole of Ne ?
b) What would be the volume of 1.00 mole of Ne at $34^{\circ} \mathrm{C}$ and 0.862 atm ?
c) What would be the density of 1.00 mole of Ne at $34^{\circ} \mathrm{C}$ and 0.862 atm ?
a: \qquad b: \qquad c: \qquad
12. What is the density of helium at 2.15 atm and $-45^{\circ} \mathrm{C}$?

Ans: \qquad
13. Determine the density of fluorine gas at 595 mmHg and 423 K .

Ans: \qquad
14. What is the density of helium at STP?

Ans: \qquad
15. 2.58 g of a gas has a volume of 3.97 L at 745 mmHg and $21^{\circ} \mathrm{C}$.

Determine the molecular weight of the gas. What gas might it be?? (see choices in ans. bank)

Ans: \qquad
16. 2.58 g of a different gas has a volume of 31.8 L at 745 mmHg and $21^{\circ} \mathrm{C}$.

Determine the molecular weight of the gas. What gas might it be?? (see choices in ans. bank)

Ans: \qquad
17. How many moles of sodium will react with 2.6 L of Cl_{2} gas at 1.15 atm and $39^{\circ} \mathrm{C}$?

Hint: use the balanced equation... $2 \mathbf{N a}+\mathrm{Cl}_{2}--->2 \mathbf{N a C l}$

Ans: \qquad
18. How many grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ will react with 3.29 L of O_{2} at 1.05 atm and $-34^{\circ} \mathrm{C}$?

Hint: balance \& use this equation... ___ $\mathbf{C}_{3} \mathrm{H}_{8}+\ldots \mathrm{O}_{2} \rightarrow--\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathbf{O}$

Ans: \qquad
Ans (IRO+3): -51 0.0259 $\begin{array}{lllllllll}29.2 & 35 & 85.6 & 144 & 20,500 & 2.3 \mathrm{E} 22 & 4.9 \mathrm{E} 22 & \mathrm{CH}_{4} & \mathrm{H}_{2}\end{array}$
Units (IRO+3): L L L L L g/L g/L g/L g/Lgggg mmHg mmHg atm atm mol mol molecule ${ }^{\circ} \mathrm{C}$ dm $\mathrm{g} / \mathrm{mol} \quad \mathrm{g} / \mathrm{mol}$

