WS 5.3 Logarithms & Exponential Equations

In this equation, *n* is the **logarithm** of *y*.

For example, $10^3 = 1000$. Therefore, log 1000 = 3. Power Property of Logarithms: $\log x^n = n \log x$

Logarithms can be used to solve equations in which variables appear as exponents *(exponential equations)*. To do this, you take the <u>logarithm</u> of <u>both sides</u> of the equation:

Example: Solve for x: $5^x = 100$ $\log 5^x = \log 100$ (take log of both sides) $x \log 5 = \log 100$ (power property of logs) $x = \log 100$ $\log 5$ $\log 5$ (solve for x)x = 2.86

Exercises: (solve for the variable, and show all steps)

1. $4^{x} = 64$

2. $2^n = 256$

3. $3^{z} = 264$

4. $4.8 = 2^{n}$

5. $2^{x} = 5024$

6. $3^n = 4.1 \times 10^5$