WS 4.7 - Review
Balance these following chemical reactions:

1. $2 \mathrm{CO}+\ldots \mathrm{O}_{2}$---> $\underline{2} \mathrm{CO}_{2}$
2. $2 \mathrm{Al}+\underline{6} \mathrm{HNO}_{3} \cdots \underline{2} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+\underline{3} \mathrm{H}_{2}$
3. $-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\underline{6} \mathrm{O}_{2}-\cdots \underline{4} \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

Use dimensional analysis to determine the following:
4. How many moles are in 3.98 g of CuSO_{4} ?

$$
3.98 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{159.5 \mathrm{~g}}=\quad \text { Ans } 0.0250 \mathrm{~mol}
$$

5. How many molecules are in 0.1029 moles of He ?

$$
0.1029 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { vales }}{1 \mathrm{~mol}}=\quad \text { Ans } 6.19 \times 10^{22} \text { coles }
$$

6. 8.4×1024 boron atoms weigh how many grams?

$$
8.4 \times 10^{24} \text { atoms } \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \mathrm{atoms}} \times \frac{10.8 \mathrm{~g}}{1 \mathrm{~mol}}=
$$

7. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

How many grams of O_{2} will be produced from 55.4 g of KClO_{3} ?

$$
\begin{aligned}
& 55.4 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{kClO}_{3}}{122.5 \mathrm{~g}} \times \frac{3 \mathrm{~mol}_{\mathrm{o}_{2}}^{\mathrm{mol}}}{2 \mathrm{~mol}_{\mathrm{Kclo}}^{3}} \times \frac{32.0 \mathrm{~g}}{1 \mathrm{mo}) \mathrm{O}_{2}}=21.7 \mathrm{~g} \\
& 2 \mathrm{Na}+\mathrm{Cl}_{3} \rightarrow 2 \mathrm{NaCl}
\end{aligned}
$$

8. $\quad \mathbf{2 N a}+\mathrm{Cl}_{2} \rightarrow \mathbf{2 ~ N a C l}$
a. Starting with 30.1 g of Na and 22.4 g of Cl_{2}, how many grams of NaCl can be made?

$$
\begin{aligned}
& 30.1 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{molNa}}{23.0 \mathrm{~g}} \times \frac{2 \mathrm{~mol}}{2 \mathrm{Nal}} \times \frac{58.5 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{NaCl}}=76.6 \mathrm{~g} \\
& 22.4 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol}_{\mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol}}{71.0 \mathrm{gaCl}} \times \frac{58.5 \mathrm{~g}}{1 \mathrm{~mol}} \times \frac{\mathrm{mol}}{\mathrm{NaCl}}}{36.9 \mathrm{~g}} \\
& \text { Ans } 36.9 \mathrm{~g}
\end{aligned}
$$

b. Afterwards, 17.1 grams of NaCl are produced by the reaction. What is the \% yield?

$$
(17.1 \mathrm{~g} \div 36.9 \mathrm{~g}) \times 100=
$$

Ans 46.3\%

9a. A compound is $38.7 \% \mathrm{C}, 16.1 \% \mathrm{H}$, and rest is N . What is its empirical formula?

$$
\begin{array}{ll}
100-38.7-16.1=45.2 \% \mathrm{~N} & \mathrm{C}_{\frac{3.23}{}} H_{16.1} N_{3.23}^{3.23} \frac{1.23}{3.23} \\
38.7 \mathrm{gC} \times \frac{1 \mathrm{~mol}}{120 \mathrm{~g}}=3.23 \mathrm{molC} & \\
16.1 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol}}{110 \mathrm{~g}}=16.1 \mathrm{~mol} \mathrm{H} & \\
45.2 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol}}{14.09}=3.23 \mathrm{molN} & \\
\mathrm{C}_{1} H_{5} \mathrm{~N}_{1}
\end{array}
$$

9 . The compound above has a molecular weight of $124 \mathrm{~g} / \mathrm{mol}$, determine its molecular formula.

$$
\mathrm{CH}_{5} \mathrm{~N}=31.0 \mathrm{~g} / \mathrm{mol} \quad \frac{124 \mathrm{~g} / \mathrm{mol}}{31.0 \mathrm{~g} / \mathrm{mol}}=4 \quad \mathrm{Ans} \mathrm{C}_{4} \mathrm{H}_{20} \mathrm{~N}_{4}
$$

multiply empirical formula \uparrow
by 4
Use the activity series (at right) to predict whether the following reactions will occur...
If YES, then write the products -- If NO, then write 'N. R.' (no reaction)
10. $\mathrm{Al}+\mathrm{FeCl}_{2} \cdots \mathrm{Fe}+\mathrm{AlCl}_{3}$
11. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Ca} \cdots \mathrm{Cu}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
12. $\mathrm{Zn}+\mathrm{NaCl}-->\quad$ N.R.
13. $K+\mathrm{Ag}_{2} S \cdots \mathrm{Ag}_{\mathrm{H}}+\mathrm{K}_{2} \mathrm{~S}$

Predict the products:
14. $\mathrm{CuSO}_{4}+\mathrm{AgCl}-->\mathrm{CuCl}_{2}+\mathrm{Ag}_{2} \mathrm{SO}_{4}$
15. $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \cdots \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
16. $\mathrm{NI}_{3} \cdots \mathrm{~N}_{2}+\mathrm{I}_{2}$
17. In the penny lab, you used an acid called \qquad HCl to react with a metal called
\qquad Zn which was inside the penny. This \qquad single replacement reaction produced two substances: \qquad H_{2} gas and zinc chloride

$$
\left(\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{ZnCl}_{2}\right)
$$

18. Suppose you made a Micro-Rocket-with butane (C4H+O) as the fuel. What is the correct ratio of fuel to 2
(13) $\mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$ the correct ratio of butane to 0_{2} is: $2: 13$
