S'mores Stoichiometry Lab

Here is your "chemical reaction" (recipe) for making s'mores:

$$
2 \mathrm{Gc}+3 \mathrm{Mm}+6 \mathrm{Cc}-->1 \mathrm{Sm}
$$

Open your ingredients bag, and count \& record the quantity of your ingredients:
\# of Gc: \qquad \# of Mm: \qquad \# of Cc: \qquad
Now, use dimensional analysis to calculate how many S'mores (Sm) can be produced from each ingredient:
\square

Limiting Reactant =

\qquad Theoretical Yield = \qquad

- Once Mr. A checks your calculations, you are ready to proceed with the "chemical reaction"!
- After the s'mores are done baking, calculate the actual yield and \% yield:

Actual Yield = \qquad
\qquad
$1 \mathrm{Gc}=4.19 \mathrm{~g}$
While you're cooking your s'mores, use (limensional analysis for $1 \sim 4$.
$1 \mathrm{Mm}=0.56 \mathrm{~g}$
While you're cooking your s'mores, use dimensional analysis for $1 \sim 4$: $1 \mathrm{Cc}=0.54 \mathrm{~g}$

1. How many Mm's are required to make 7 S'mores (Sm)?
2. How many Sm can be made with 29.5 g of Gc ?
3. How many Sm can be made with $65.1 \mathrm{~g} \mathrm{Gc}, 7.20 \mathrm{~g} \mathrm{Mm}$, and 6.48 g Cc ?
(calculate how many Sm can be made with each ingredient, and circle the theoretical yield)
4. Suppose you had 120.0 g of Gc. How many g of Mm would you need such that you'd have no leftovers?
5. Explain why chemists would use the concept of limiting reactant when conducting chemical reactions, especially large scale reactions.
