WS 4.5.1 Percent Composition

1. Determine (to 3 sig fig's) the \% composition for each element in the following substances:

2. There are three types of iron ores in Missouri. Determine the \% Fe in each.

$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	
		FeS_{2}
$\% \mathrm{Fe}=\ldots$		
name of ore:	\% Fe=name of ore:	\% Fe= name of ore:

WS 4.5.2 Empirical Formula

1. A compound is $12.7 \% \mathrm{Al}, 19.7 \% \mathrm{~N}$, and $67.6 \% \mathrm{O}$. Determine its empirical formula.

Ans \qquad
2. A compound is $39.6 \% \mathrm{C}, 7.7 \% \mathrm{H}$, and the rest O . Determine its empirical formula.

Ans \qquad
3. A compound is $23.3 \% \mathrm{Mg}, 30.7 \% \mathrm{~S}$, and 46.0% O by mass. Determine its empirical formula.

Ans \qquad
4a. A compound is $85.7 \% \mathrm{C}$ and $14.3 \% \mathrm{H}$ by mass. Determine its empirical formula.

Ans \qquad
4b. This substance's molecular weight is $84 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula.
Ans \qquad
5a. A compound is $30.4 \% \mathrm{~N}$, and 69.6% O by mass. Determine its empirical formula.

Ans \qquad
5b. This substance's molecular weight is $92 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula.
Ans \qquad
6a. A compound is $12.1 \% \mathrm{C}, 16.2 \% \mathrm{O}$, and the rest Cl by mass. Determine its empirical formula.

Ans \qquad
6 b . This substance's molecular weight is $297 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula.
Ans \qquad
$(\mathrm{IRO}+16) \mathrm{CH}_{2}, \mathrm{C}_{2} \mathrm{H}_{9}, \mathrm{C}_{2} \mathrm{H}_{3}, \mathrm{C}_{6} \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{9}, \mathrm{Al}_{2} \mathrm{NO}_{4}, \mathrm{Al}_{3} \mathrm{NO}_{3}, \mathrm{AlN}_{3} \mathrm{O}_{9}, \mathrm{CH}_{2} \mathrm{O}_{2}, \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}, \mathrm{MgS}_{3} \mathrm{O}_{2}, \mathrm{MgSO}_{3}$, $\mathrm{Mg}_{2} \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{NO}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{6}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{COCl}, \mathrm{C}_{2} \mathrm{OCl}_{2}, \mathrm{COCl}_{2}, \mathrm{CO}_{3} \mathrm{Cl}_{2}, \mathrm{C}_{3} \mathrm{O}_{3} \mathrm{Cl}_{6}$

