WS 4.3	STOICHIOMETRY	(part 1)

Show all work using dimensional analysis!

1. 4 Na + O₂> 2 Na₂O a) How many moles of sodium (Na) would be needed to react with 3.82 moles of oxygen (O ₂)?		
b) How many moles of Na ₂ O can be produced from 13.5 moles Na?	Ans	
c) How many moles of O ₂ are needed to produce 34.7 g of Na ₂ O?	Ans	
2. $C_2H_4 + 3O_2> 2CO_2 + 2H_2O$ a) When 0.624 moles of O_2 are reacted, how many moles of carbon dioxide are p	Ans	
b) How many grams of C_2H_4 are needed to produce 3.7 moles of water?	Ans	
c) how many grams of O_2 are needed to react with 2.56 g of C_2H_4 ?	Ans	
3. N ₂ + 3 F ₂ > 2 NF ₃ a) When 62.0 g of fluorine are reacted, how many moles of NF ₃ will be formed? (don't forget fluorine is diatomic)	Ans	
b) How many molecules of N ₂ are needed to produce 2.85 g of NF ₃ ?	Ans	
c) 3.54 g of nitrogen trifluoride will form from how many grams of fluorine?	Ans	
4. 4 NH ₃ + 7 O ₂ > 4 NO ₂ + 6 H ₂ O a) What mass of NO ₂ can be produced from 3.56 x 10 ²² molecules of oxygen?	Ans	
b) 13.8 g of NH_3 would be able to produce how many moles of H_2O ?	Ans	
c) How many grams of O ₂ are needed to produce 15.5 g of H ₂ O?	Ans	
Ans (IRO+1): 0.280 0.416 1.09 1.22 1.55 2.84 6.75 8.78 15.3 22.4 32.1 52 1.21x104 Units (IRO+1): mol mol mol mol mol mol g g g g g molecules	Ans	